# Range Mex

Mex ( minimum excludant ), has an interesting property in game theory, where an sprague grundy value of a state in a fair game can be deduced from the mex of the sg-values of all the states it could reach in the next step.

The definition of mex, is the minimum non-negative integer not included in a set.

For example: mex( { 1, 2, 3 } ) = 0, mex( { 0, 1, 2, 3, 5, 8 } ) = 4.

Now it would sound a little too abrupt, but the problem here is to find mex value for any range [ l, r ]. Given the number of the array of the sg-values 1 <= N <= 1e5, number of queries 1 <= M <= 1e5, and 1 <= A[i] <= 1e9, 1 <= l <= r <= N.

Inspired by Mo's algorithm, the way I tried tackling this problem is to sort by the right bound first. Consider that after a number A[i] is excluded from its position, let the next position of A[i] be next[ A[i] ], we will find that now [ i + 1, next[ A[i] ] - 1 ] is able to choose this number A[i]. So we can update the minimum value that can be used everytime the left bound is shrinked towards the right. And noticing that any mex number cannot be larger that the number of values in its range, we can put all A[i] > n to n.

Below is my code for the range mex problem.

C: 茶碗と豆 - AtCoder Regular Contest 038 | AtCoder

and this for further practice in the future, applied range mex on sg-values ( not sure but seems to be solved online ? ), seems to require some binary search on last occurence.

```#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MAXN = 1e5 + 5;
const int MAXM = 1e5 + 5;

struct Query{
int ql, qr, id;
int mex;
scanf("%d %d", &ql, &qr);
--ql, --qr;
id = _id;
}
} qry[MAXM];
bool cmp_l(const Query &a, const Query &b){ // sort by l
return a.ql < b.ql;
}
bool cmp_id(const Query &a, const Query &b){
return a.id < b.id;
}

int vis[MAXN], init_mex[MAXN], next_idx[MAXN];
struct IntervalTree{
int lb, rb, size, min_tag;
IntervalTree *lc, *rc;
IntervalTree(): min_tag(INF), lc(NULL), rc(NULL){}
void push(){ // only the leaf is valid
if( lb == rb ) return;
if( min_tag == INF ) return;
if( lc ) lc->min_tag = min( lc->min_tag, min_tag );
if( rc ) rc->min_tag = min( rc->min_tag, min_tag );
min_tag = INF;
}
} *root;
void build(IntervalTree *t, int lb, int rb){
t->lb = lb, t->rb = rb, t->size = rb - lb + 1;
if( lb == rb ){
t->min_tag = init_mex[lb];
return;
}
int mid = ( lb + rb ) / 2;
t->lc = new IntervalTree();
t->rc = new IntervalTree();
build( t->lc, lb, mid ); build( t->rc, mid + 1, rb );
}
void update(IntervalTree *t, int ql, int qr, int v){
if( qr < t->lb || t->rb < ql ) return;
if( ql <= t->lb && t->rb <= qr ){
t->min_tag = min( t->min_tag, v );
return;
}
t->push();
update( t->lc, ql, qr, v ); update( t->rc, ql, qr, v );
}
int query(IntervalTree *t, int k){
if( t->lb == t->rb ) return t->min_tag;
t->push();
int mid = ( t->lb + t->rb ) / 2;
if( k <= mid ) return query( t->lc, k );
return query( t->rc, k );
}

int n, m;
int a[MAXN];

void init(){
memset( vis, -1, sizeof(vis) );
for(int i = n - 1; i >= 0; --i)
next_idx[i] = vis[ a[i] ], vis[ a[i] ] = i;
memset( vis, 0, sizeof(vis) );
int cur_mex = 0;
for(int i = 0; i < n; ++i){
if( a[i] < MAXN ) vis[ a[i] ] = 1; // not gonna use if too big
while( vis[ cur_mex ] ) ++cur_mex;
init_mex[i] = cur_mex;
}
// for(int i = 0; i < n; ++i) printf("%d ", init_mex[i]);
root = new IntervalTree();
build( root, 0, n - 1 );
}

void solve(){
init();
sort( qry, qry + m, cmp_l );
int l = 0;
for(int i = 0; i < m; ++i){
while( l < qry[i].ql ){
int nxt = next_idx[l]; // next same occurence
if( nxt < 0 ) nxt = MAXN;
if( l + 1 <= nxt - 1 ) update( root, l + 1, nxt - 1, a[l] );
++l;
}
qry[i].mex = query( root, qry[i].qr );
}
sort( qry, qry + m, cmp_id );
}

int main(){
int T; scanf("%d", &T);
while( T-- ){
scanf("%d %d", &n, &m);
for(int i = 0; i < n; ++i){
scanf("%d", &a[i]);
if( a[i] >= MAXN ) a[i] = MAXN - 1;
}
for(int i = 0; i < m; ++i)